Chapter 5: What Is a Docker Image?

Introduction

Docker images - The deep dive
Pulling Images

Image Registry

Images and layers
Multi-architecture images

Delete Images

Deleting All Images at Once

Image Debugging

Essential Docker Image Commands

Chapter Summary

Introduction

In this chapter, we'll take a deep dive into Docker images. The goal is to give you a clear, practical understanding of
what Docker images are, how to work with them through essential operations, and what’s happening behind the

4 A
),
Yz

Dockerfile Running container(s)
\ J

Figure #: From Dockerfile to Container

scenes when you use them.

This diagram shows the standard Docker workflow for creating a running application. It starts with a Dockerfile inside
your project, which contains all the instructions needed to build an image. In the previous chapter, you learned how
the Docker Engine works at a low level — the CLI, the Engine API, the Daemon, BuildKit, and Buildx. That foundation

now becomes essential, because those components are exactly what turn your Dockerfile into a real image.

Step 2: Container Runtime Pipeline

cLrewT

Dackes image venee Deckit tamgs buidad i Stag 1

T Dodker Gommnds (64)

e - ¥)
ek E ne APT Pl Recsives APT requst
=
w daemon ceernssiniennnnsrnereae s Brgtute Request
7 \

* Container Run Pipeline
waens NNl 777777

I I {start stoplelete])

BulldKit Image builder] o s o s “nvenee Masping dantaingr open

. A o

I
¥
1
L oo Tmage it g gy

-+ Runsing container
from icage —p-opp

Docker image

Figure 17: Docker Workflow

In the Docker Workflow, you can see the full path from source code to a running application.

When you run a build command and your project includes a Dockerfile, the Docker CLI hands the request off to the
Docker API, which then passes each instruction to the Docker Daemon for execution. The Daemon passes the job to
BuildKit, which reads your Dockerfile line by line, builds each layer, and produces the final Docker image — a portable

blueprint of your application.

In Step 2 of the figure, you can see that running docker run my-app takes the image builded in Step 1and

starts a live instance of it—a Docker container. This is the moment your application actually comes to life.
From there, the workflow becomes simple: Dockerfile - Image — Container.

Understanding this pipeline shows you exactly why each part of the Docker Engine exists and how they work together
to turn your code into a running application.

Later in the book, we’ll take this even further by building image for real front-end React.js sample applications —
including a full production-ready setup deployed to AWS.

© Dpockerfile
The Dockerfile is the recipe that tells Docker exactly how to build an image — layer by layer, step by step.
Whenever you run docker build , Docker reads the instructions in this file and uses them to create a new
image from scratch.It’s the recipe that defines how an image is built — layer by layer, step by step. Every time
yourun docker build , Docker reads your Dockerfile and creates a new image based on those

instructions. We will explore the Dockerfile in depth in next chapters.

Docker images - The deep dive

An image is like a blueprint, while a container is the actual app running from that blueprint. You can think of images as
instructions, and containers as the real, working result of those instructions.
. Images exist at build time. They define everything your app needs: code, dependencies, and configuration.

. Containers exist at run time. They are live, running instances of your app created from an image.

You can use commands like doCKeI run to start one or more containers from the same image. Once a container
is running, it depends on the image it was created from. Because of this, Docker won’t let you remove an image if

there are still containers using it. To delete an image, you must first stop and remove all of its containers.

This simple relationship is important: images are reusable blueprints, and containers are temporary instances from this
image. You can start, stop, and remove containers freely, but the image stays the same until you decide to build,
update or delete it.

Docker image

~.

\\..
T~
& ~a
Docker Docker | Docker
Container 1 Container 2 Container 3
Each container is isolated, but all come
from the SAME image _)

Figure 18: mage as Blueprint — Many Running
Containers

.

Images Are Usually Small

A container is designed to run a single application or service. Because of this, it only needs the application code and

its required dependencies — nothing more. As a result, images are usually small and stripped of all unnecessary parts.

For example, the official Alpine Linux image is only about 7 MB. It’s so small because it doesn’t include multiple shells,
package managers, or other extras. In fact, many images don’t include a shell or a package manager at all — if the
application doesn’t need it, it’s not included.

Another important detail is that images don’t contain a kernel. Containers share the kernel of the host machine they
run on. This means the only operating system parts included in an image are minimal: a few essential filesystem
components and other basic constructs.

Windows-based images, however, tend to be much larger than Linux-based ones. This is simply due to the way
Windows is built. It's common for Windows images to be several gigabytes in size, which makes them slower to push
and pull compared to lightweight Linux images.

Pulling Images

When you first install Docker, your host has no images stored locally. On Linux, the local image repository is usually
found under:

1 /var/lib/docker/<storage-driver>
On Mac or Windows with Docker Desktop, everything runs inside a virtual machine, but the concept is the same.
To check what images you currently have, use:

1 docker images

If no images are listed, you’ll need to pull them. Pulling is the process of downloading images from a registry (like
Docker Hub) onto your host.

For example, let’s pull the official Node.js image based on Alpine Linux:

1 docker pull node:24.7.08-alpine
2

You'll see output similar to this:

24.6.0-alpine3.22: Pulling from library/node

b5d25b35cldb: Pull complete

6970efaeb6230: Pull complete

fea4afd29dlf: Pull complete

Digest:
sha256:9a4c2b52al6e4a2f4f98b1f7d10d8Ffcd8al84e94esbedle3af9dl6f07b75d2al
Status: Downloaded newer image for node:24.7.0-alpine

7 docker.io/library/node:24.7.08-alpine

g N NN

o

Now, if we check our images again:
1 docker images

Output:

1 REPOSITORY TAG IMAGE 1D CREATED SIZE

2 node 24.6.0-alpine3.22 44dd6f223004 10 days ago 234MB

3
As you can see, the node:24.7.0-alpine image is now stored locally, ready to be used for containers. Notice
how small it is — 55.9 MB is the compressed transfer size (what you download).
The 234 MB you saw is the uncompressed size on disk after Docker extracts the image layers. — thanks to being
based on Alpine Linux.

On the other hand, Windows-based images are often much larger. This makes them slower to download and push
compared to lightweight Linux images.

Image Registry
When we pulled an image earlier, we had to specify which image to download. To understand this better, let’s look at
how image naming works.

Images are stored in central locations called registries. Registries make it easy to share, access, and manage images.

The most common registry is Docker Hub (® Docker Hub Container Image Library | App Containerization), but there
are also:

. Third-party registries (like GitHub Container Registry (GHCR) , AWS Elastic Container Registry (ECR) ,Google
Artifact Registry, Azure Container Registry (ACR))

. Private registries (used inside organizations for security and control).

https://hub.docker.com/
https://hub.docker.com/

By default, the Docker client uses Docker Hub when you pull or push images. That’s why, unless you specify

otherwise, Docker assumes your image lives on Docker Hub.

Image naming and tagging
Every Docker image has two main parts: a repository name and a tag, written in the format:

1 <repository>:<tag>
2

Pulling Official Images

If the image comes from an official repository on Docker Hub, you just provide the repository name and tag. For
example, let’s pull the official Node.js image:

1 docker image pull node:24.7.0-alpine
2

. node - the repository (official Node.js images).

. 24.6.0-alpine3.22 - the tag (this version of Node.js built on Alpine Linux 3.22).

You can also pull the default 1atest tag:

1 docker image pull node:latest
Or simply:

1 docker image pull node

Since no tag is provided, Docker assumes you want latest . But be careful— latest doesn’talways mean
newest. For example, while node:latest might point to a stable release, the newest version might be tagged

differently (like node:current).
Best practice

Always use explicit version tags (e.g. node:24.7.0-alpine)instead of vague ones like latest oreven
node:24 .

1. Reproducible Builds
o With a fixed tag, the same Dockerfile will build the same image tomorrow, next week, or next year.
o Floatingtags (latest , node:24) can silently change upstream, introducing new bugs or incompatibilities
without you touching your code.
2. Predictable Deployments
o CI/CD pipelines and production clusters rely on consistency.
o If one server pulls hode :24 today and another pulls it next week, they might end up with different runtimes.
That’s a recipe for “works on my machine.”
3. Easier Debugging & Rollbacks
o Pinning lets you trace exactly which environment your app was built against.

o If a regression happens, you can roll back to a known-good version without guessing what “latest” meant last
Tuesday.

4. Security & Compliance

o In regulated or enterprise environments, you often need to prove exactly which base image was used.
o Pinning a tag makes audits and vulnerability scans precise and trustworthy.

5. Layer Caching & Build Performance

o Docker layer caching works best when the base image tag is stable.

o Using moving tags like latest can invalidate caches unnecessarily, slowing down builds.

Pulling from Personal Repositories

Images in personal or organization repositories require a namespace. For example:

1 docker image pull myusername/react-app:dev
2

This pulls the image tagged dev fromthe react-app repository owned by the user myusername .

Pulling from Other Registries

Not all images live on Docker Hub. For example, if your team uses Google Container Registry (GCR), you must include

the registry domain name:

1 docker image pull gcr.io/myproject/node:24.6.0

This pulls version 24.6.0 of Node.js from your project’s private GCR repository.

Images with Multiple Tags

A single image can have multiple tags pointing to the same image ID. For example, you could pull all tags of your
custom Node.js image:

1 docker image pull -a myusername/react-app
2 docker image 1s

Output might look like this:

1 REPOSITORY TAG IMAGE ID SIZE
2 myusername/react-app latest d5ele48cf932 700MB
3 myusername/react-app v2 d5ele48cf932 700MB
4 myusername/react-app vl 6852022de69d 680MB
5

Here, both 1latest and v2 share the same IMAGE ID, meaning they’re just two tags for the same image.

Again, this shows why you shouldn’t blindly rely on latest . It could point to an older version. Always tag and pull
explicitly.

Images and layers
A Docker image is made up of read-only layers. Each layer represents the result of one instruction in your Dockerfile

(ike FROM, RUN ,or COPY). Docker stacks these layers together and exposes them as a single, unified image.

. Layers are cached, so if nothing changes in a step, Docker reuses the existing layer. This makes builds faster.

. Layers are shared, meaning different images can reuse the same base layers (e.g., node:24.7.0-alpine), which saves

disk space.

When you pull an image, Docker downloads it layer by layer. That’s why you’ll see messages like “Pulling fs layer” for
each step. Inspecting those layers helps you understand how an image is constructed and where optimizations can be

made.

Image layers

Layer 1: Alpine Base Layer

v

Layer 2: System Dependencies

v

Layer 3: Node.js Runtime

v

Layer 4: Environment Setup

v

Layer 5: Metoadata

Figure 19: Docker image layers

Here’s roughly what you can expect to see:
1. Alpine Base Layer
o Small Linux distribution (@lpine:3.22).
o Contains only the bare minimum (busybox, musl, apk).
o Keeps the image tiny (a few MB).
2. System Dependencies
o Installs required tools for Node.js (like serve , python3, vite).
o These are needed to compile native npm packages.

3. Node.js Runtime
o Adds the Node.js binaries (24.7.0-alpine).

o Includes NPmM and sometimes corepack for managing yarn and pnpm.
4. Environment Setup

o Sets environment variables like NODE_VERSION and PATH.

o Ensures /usr/local/bin/node is available globally.
5. Final Metadata Layer

o Adds labels, default CMD ["node"] , and other metadata.

o This is what makes the image behave like “just run Node.”
When running:

1 docker pull node:24.7.08-alpine

Docker outputs something like:

1 24.6.0-alpine3.22: Pulling from library/node

2 Digest:
sha256:51dbfc749ec3018c7d4bf8h9eeb5299Ff9a908e38918celb3bBacfcd5dd931d9

3 Status: Image is up to date for node:24.7.0-alpine

4 docker.io/library/node:24.7.0-alpine

You won'’t always see exact human-friendly descriptions, but behind the scenes each "Pulling fs layer" corresponds to
one of the steps above.

To actually inspect the layers, you can run:
1 docker history node:24.7.0-alpine

Which gives output like:

1 IMAGE CREATED CREATED BY
SIZE COMMENT

2 51dbfc749ec3 2 weeks ago CMD ["node"]
0B buildkit.dockerfile.v@

3 <missing> 2 weeks ago ENTRYPOINT ["docker-entrypoint.sh"]
0B buildkit.dockerfile.v@

4 <missing> 2 weeks ago COPY docker-entrypoint.sh /usr/local/bin/
. 20.5kB buildkit.dockerfile.v@

5 <missing> 2 weeks ago RUN /bin/sh -c apk add --no-cache --
virtual .. 5.47MB buildkit.dockerfile.v@

6 <missing> 2 weeks ago ENV YARN_VERSION=1.22.22
0B buildkit.dockerfile.v@

7 <missing> 2 weeks ago RUN /bin/sh -c addgroup -g 1000 node
&& 161MB buildkit.dockerfile.v@

8 <missing> 2 weeks ago ENV NODE_VERSION=24.6.0
0B buildkit.dockerfile.v@

9 <missing> 6 weeks ago CMD ["/bin/sh"]
0B buildkit.dockerfile.v@

10 <missing> 6 weeks ago ADD alpine-minirootfs-3.22.1-
aarché4.tar.gz .. 9.17MB buildkit.dockerfile.v@

Every time youuse node:24.7.08-alpine , you're not downloading “one big thing.” You're pulling a stack of
layers: Alpine - system deps — Node.js runtime — metadata.
This layering is what makes Docker fast and efficient, because cached layers are reused across projects.

Multi-architecture images

Docker started out simple: one image, one platform. But as the ecosystem grew, developers needed images that could
run on different CPU architectures (like x64 and ARM) and operating systems (Linux and Windows).

The problem? A single image tag could no longer mean the same thing everywhere. Without a solution, you’d have to

worry about picking the right variant yourself — breaking the smooth Docker workflow.
Architecture vs. Platform
. Architecture = CPU type (e.g., X64 , ARM, PowerPC, s390x).

. Platform = Operating system (Linux , Windows) or OS + architecture together (e.g., 1inux/armé4).

The Solution: Multi-Arch Images

With multi-architecture images, a single tag (like node:24.7.0-alpine) can represent different builds for

different platforms and architectures.

Multi-architecture images

! ,,,,,,,,,,,,,,,,,,,,,,,,, Your Application code
....................... Dockerfile

linuxfamd64
_

linux/amré4
e

linux/armi7
— I

windows/arm64
T

windowsfamdé4
—_—

Figure 20: multi-architecture images

Take the official node:24.7.0-alpine image. Behind this single tag, there are different builds: Linux on x64,
Linux on ARM64 (for Apple Silicon/M1/M2 chips), and others. When you pull the image, Docker figures out which one
matches your system and fetches only that build.

How Docker Chooses the Right Node.js Image

Let’s say you’re on a MacBook with Apple Silicon (ARM64). When you pull node:24.7.0-alpine , Docker does

the following:

1. Downloads the manifest list for the image from Docker Hub.
2. Finds the entry for Linux/ARM®64.
3. Retrieves the manifest for that platform.

4. Downloads and assembles the layers for the ARM64 variant of Node.js.

The same process works on a Linux server running x64 — Docker automatically pulls the x64 version instead.

Example: Same Command, Different Platforms

Linux on ARM64 (Apple Silicon / Raspberry Pi):

1 docker run --rm node:24.7.0-alpine node -v
2 v24.6.0

Linux on x64 (standard server/PC):

1 docker run --rm node:24.7.0-alpine node -v
2 v24.6.0

Both commands are identical. Docker just gives you the right binary for your platform.
Inspecting the Node Image Manifest List

You can check which platforms are supported with:

1 docker manifest inspect node:24.7.0-alpine | grep 'architecture\|os'
2

The output (shortened) shows multiple supported platforms:

1 "architecture": "amdé4",
2 "os": "linux"
3 "architecture": "armé4",
4 "os": "linux",
5) "architecture": "s390x",
6 "os": "linux"

This means the node:24.7.0-alpine image supports at least Linux/x64 and Linux/ARM64.
Building Your Own Multi-Arch Images

As a front-end developer, you might package your React or Next.js app into a Docker image. With dockexr
buildx , you can publish a multi-arch image so it runs on both ARM (MacBooks, Raspberry Pi) and x64 (servers,
CI/CD). For example:

1 docker build --platform linux/amdé4,linux/armé4 -t my-frontend:latest .
2

This creates one tag (my-frontend:latest) that supports both architectures — no more juggling different
builds.

That’s why you can run:

1 docker run node:24.7.0-alpine node -v

on your MacBook, your Windows WSL, or your Linux CI server, and it just works. The manifest list makes sure you

always get the right Node.js binary for your environment.

Delete Images

At some point in your development workflow, your local machine will accumulate many Docker images. Each time you
run docker pull or build a newimage with docker build , Docker stores it on your host. Over time, this

can consume a significant amount of disk space. Cleaning up unused images is a normal part of Docker maintenance.

Docker provides the docker Imi command for this purpose. The name IMi comes from remove image. When
you remove an image, Docker will:

. Un-tag the image: the friendly name like node:24.7.0-alpine isremoved.

. Delete the image layers: the actual underlying data stored on your machine is deleted.

. Preserve shared layers: if another image depends on the same layers, Docker keeps them until no image needs
them.

8 Important

If an image is in use by a running container, Docker will refuse to delete it. This prevents you from accidentally
breaking a container that depends on that image. To fully clean up, you need to stop and remove the container

before deleting the image.

To stop a running container, you can use: docker stop <container_id_or_name>

Deleting an Image by ID

Every Docker image has a unique identifier, known as the IMAGE ID. You can find it with:

1 $ docker images

2 REPOSITORY TAG IMAGE ID CREATED
SIZE

3 node 24.6.0-alpine3.22 44dd6T223004 2 weeks ago
234MB

4

Here, the Node.js image we pulled has the ID 44dd61223004 .
To delete the image, run either of the following commands:

1 $ docker image rm 44dd6f223004
or, equivalently:

1 $ docker rmi 44dd6f223004

Sample output:

1 Untagged: node:24.7.08-alpine
2 Deleted: sha256:44dd6f2230041eede4eeSe7. ..

What happens here?

1. Docker first removes thetag node:24.7.0-alpine .

2. It then removes the layers associated with this image.

3. If those layers are shared with another image, they won’t be deleted until all references are gone.
Now, if yourun docker images again, the image is no longer listed.

This method is handy when scripting automation pipelines because IDs are always unique and precise.

Deleting an Image by Name

Typing long IDs every time you want to remove an image can be tedious. That’s why most developers prefer to delete

images by their repository name and tag:

1 $ docker rmi node:24.7.8-alpine

or, using the modern way with docker image rm <image> :
1 $ docker image rm node:24.7.0-alpine

This works the same way as deleting by ID. However, be aware that if multiple tags point to the same image ID (e.g.,
node:24.7.0-alpine and node:latest), Docker will only remove the tag you specified. The underlying

layers will remain until all tags are gone.

This approach is more human-friendly and is what you'll typically use in day-to-day development.

Deleting Multiple Images at Once

React.js developers often test with multiple Node.js versions (for example, Node 22 and Node 24). You may want to

clean them all up in one go.
By name:

1 $ docker rmi node:24.7.8-alpine node:22-alpine3.19
2

By ID:
1 $ docker rmi 44dd6f223004 3f5ef9003cef

Docker will process each one in sequence. If one cannot be deleted because it’s in use, Docker will skip it but still
remove the others.

Output looks like this:

Untagged: node:24.7.0-alpine
Deleted: sha256:44dd6f223004. ..
Untagged: node:22-alpine3.19
Deleted: sha256:3f5ef9003cef...

g N NN

Deleting All Images at Once

Over time, your Docker host may accumulate a large number of images — some you still use, others left over from
experiments or old builds. Docker gives you two main ways to clean them up, depending on whether you want a safe

cleanup or a full reset.
Option 1: Safe Cleanup with docker image prune -a
The command:

1 $ docker image prune -a
What it does:

. Removes unused images (images not referenced by any container).
. Leaves behind any images that are still in use by existing containers.

. Frees up disk space without breaking anything currently running.

This is the option you’ll use most often in day-to-day development. For example, if you’ve been switching between
multiple Node.js base images (node:22 , node: 24, etc.) and don’t need the old ones anymore, this command

will clean them up safely.
Option 2: Full Reset with docker rmi $(docker images -q) -f

Sometimes, though, you want a completely clean slate — for example, if you’ve been experimenting heavily, your
disk is full, or you want to reset your machine before a fresh workshop or demo. In that case, you can wipe all images

at once:
1 $ docker rmi $(docker images -q) -f
Here’s what’s happening:
. docker images -q - lists only image IDs.
. $(-) - passes that list into the next command.
. -f - forces deletion, even if the image has multiple tags.
Sample run:
Untagged: node:24.7.08-alpine
Deleted: sha256:44dd6f223004. . .

Untagged: node:22-alpine3.19
Deleted: sha256:3f5ef9003cef...

g DN WD

Checking again:

1 $ docker images
2 REPOSITORY TAG IMAGE ID CREATED SIZE

Empty. Your host is clean.
A on Windows, this command works in PowerShell but not in CMD.

How to fix the Error Image Is in Use ?

If you try deleting an image that’s powering a container, you’ll see:
1 $ docker rmi node:24.7.8-alpine
2 Error response from daemon: conflict: unable to remove repository

reference "node:24.7.0-alpine" (must force) - container abc123 is using
its referenced image

Fix: Stop and remove the container first:
1 $ docker ps
2 $ docker stop abc123
3
4

$ docker rm abcl23
$ docker rmi node:24.7.0-alpine

Image Debugging

Debugging Docker images is often necessary when containers fail to run, dependencies are missing, or the
environment isn’t behaving as expected. This section provides practical ways to inspect and troubleshoot Docker

images and their containers.

1. Run a Container with an Interactive Shell

One of the simplest ways to debug an image is to run a container interactively. This allows you to explore the

filesystem, check installed packages, and manually test commands.
Start a container from the image and drop into a shell:

1 docker run -it --rm <image_name> /bin/sh
2

If the image includes bash (common in Debian/Ubuntu-based images):

1 docker run -it --rm <image_name> /bin/bash
2

. The -1t flag ensures you get an interactive terminal.
. The --Im flag removes the container once you exit, so you don’t leave unused containers behind.

. Useful for checking directory structure (1S, cd), testing binaries, or verifying configuration files.

2. Debug an Existing Running Container

If the container is already running and you need to peek inside, use doCKker eXec to attachtoit. This is

especially useful if you want to debug a live service without restarting it.

1 docker exec -it <container_id_or_name> /bin/sh
2

or:

1 docker exec -it <container_id_or_name> /bin/bash
2

. Allows you to inspect logs, environment variables, or running processes.
. Example: running PS auX inside can show you if your service is actually running.

. You can combine this with docker logs <container_id> to troubleshoot startup errors.

3. Inspect Image Metadata

The docker inspect command gives you full details about an image or container in JSON format.

1 docker inspect <image_name>
2

This output includes:

- Entrypoint and CMD: What command runs when the container starts.
. Environment Variables: Defaults baked into the image.
. Volumes: Directories marked for persistence.

. Exposed Ports: What ports the container listens on.

Understanding these details helps you check if your container is starting with the correct configuration.

4. Explore Image Layers
Docker images are built in layers, each representing a command in the Dockerfile. If something breaks, looking at the
history helps you pinpoint where.

1 docker history <image_name>
2

You'll see:

. The Dockerfile command that created each layer.
. The size of each layer.

. Timestamps of creation.

This is useful for:

. Finding which step installed (or failed to install) a dependency.

. Identifying unnecessarily large layers (e.g., a forgotten cache).

. Verifying that your COPY or RUN commands are applied as expected.

5. Export and Explore Filesystem
Sometimes you want to dig deeper into the container’s contents outside of Docker. You can export the container

filesystem and explore it locally:

1 docker export <container_id> > container.tar
2

Then extract the .tar file with:

1 tar -xf container.tar
2

This allows you to:

. Inspect files even if the container no longer runs.

. Compare configurations between builds.

. Use your local tools (e.g., IDE, grep) to search inside the container’s filesystem.

6. Common Debugging Tips

Here are a few additional tricks for everyday debugging:

. Check Environment Variables:

Inside the container, run:

1 printenv
2

or
1 echo $ENV_VAR_NAME

to confirm configuration values.

. Verify Installed Packages:
Use the package manager:

1 apt list --installed | grep <package_name>
2

1 yum list installed | grep <package_name>
2

This confirms if a dependency is missing.

. Test Network Access:

Run:

1 curl http://google.com
2

to confirm internet or service connectivity.

. Rebuild Without Cache:
If you suspect Docker’s cache is causing problems, rebuild clean:

1 docker build --no-cache -t <image_name> .

. Check Startup Logs:

1 docker logs <container_id>

This is often the first step when a service fails to start.

Essential Docker Image Commands

Command Description

docker image Build an image from a
build -t my- Dockerfile inthe

React.js Developer

Use Case

Package your React

app (after npm run

react-app:dev

docker image
1s

docker image
pull
node:24.7.0-
alpine

docker image
rm my-react-

app:dev

docker image

prune -a

docker image
tag my-react-
app:dev
myusername/my-
react-
app:v1.0.0

docker image
push
myusername/my-
react-
app:v1.0.0

docker image
inspect my-
react-app:dev

current directory. The
-t flagaddsa

name/tag.

List all images currently

on your host.

Download an image
from a registry (default:
Docker Hub).

Remove one or more

images from your host.

Remove unused

images (-@ removes
all unused, not just
dangling).

Add a new tag pointing

to the same image.

Push animage to a

registry.

Show detailed JSON
about an image: layers,
config, env, ports.

build)into an

image for local testing
or deployment.

Quickly check which
Node.js and React app
images you already

have.

Get the official Node.js
base image to build
and run your React
app.

Clean up old builds or
outdated Node.js
images taking up disk
space.

Free up disk space
after lots of rebuilds or
switching Node.js

versions.

Version your React app
image for releases in
CI/CD.

Share your React app
image with teammates
or deploy to
production.

Verify what’s inside
your React app image
before deploying.

docker image
history
node:24.7.0-
alpine

docker image
save my-react-
app:dev -0
react-app.tar

docker image
load
app.tazxr

-i react-

docker image
import my-
app.tazx

Chapter Summary

Show how an image

was built, layer by layer.

Save an image as a tar
archive.

Load an image from a
tar archive.

Create an image
directly from a tarball
filesystem.

Troubleshoot large
image sizes or learn
how Node.js images
are structured.

Export your React app
image to move
between environments
(useful in offline

setups).

Import your saved
React app image into
another system without
pulling from a registry.

Rarely used — but
handy for restoring app
files as an image
without a Dockerfile.

In this chapter, we took a deep dive into Docker images — the blueprints for containers. We learned that images
package everything needed to run an app: your code, dependencies, the runtime (like Node.js), and just enough of an
operating system to stay lightweight and portable.

We saw that images are built in layers, making them efficient to reuse and share across projects. We compared images
(blueprints) to containers (running instances) and explored why lightweight images like Alpine are common in front-

end development, while Windows images are much larger.

We also looked at registries like Docker Hub, third-party cloud registries, and private registries, and we covered how
image naming and tagging works. Best practice: always pin exact versions (e.g., node:24.7.0-alpine)

instead of relying on latest . This ensures reproducible builds, predictable deployments, and easier debugging.

We examined how Docker supports multi-architecture images, allowing the same tag to run seamlessly on different
platforms (Linux, ARM, Windows).

Finally, we worked with the key image management commands:
. Pulling (docker pull)
. Listing (docker images)

. Deleting by ID or name (docker rmi)
. Removing multiple or all images at once

. Handling errors when an image is still in use

Next: Choosing the Right Node.js Image

Not all Node.js images are created equal.

In the next chapter, we’ll look at how to choose the right Node.js base image for your project — whether you need the
smallest possible image for production or a more complete one for development.

You'll learn when touse alpine, slim, or full images, how version tags work, and how to balance image size,

speed, and compatibility for your React or front-end builds.

